Effect of Buoyancy Ratio on Non-Darcy Mixed Convection in a Vertical Channel: A Thermal Non-equilibrium Approach
نویسندگان
چکیده
This article presents a numerical study of the doublediffusive mixed convection in a vertical channel filled with porous medium by using non-equilibrium model. The flow is assumed fully developed, uni-directional and steady state. The controlling parameters are thermal Rayleigh number (RaT ), Darcy number (Da), Forchheimer number (F), buoyancy ratio (N), inter phase heat transfer coefficient (H), and porosity scaled thermal conductivity ratio (γ). The Brinkman-extended non-Darcy model is considered. The governing equations are solved by spectral collocation method. The main emphasize is given on flow profiles as well as heat and solute transfer rates, when two diffusive components in terms of buoyancy ratio are in favor (against) of each other and solid matrix and fluid are thermally non-equilibrium. The results show that, for aiding flow (RaT = 1000), the heat transfer rate of fluid (Nuf ) increases upto a certain value of H, beyond that decreases smoothly and converges to a constant, whereas in case of opposing flow (RaT = -1000), the result is same for N = 0 and 1. The variation of Nuf in (N, Nuf )-plane shows sinusoidal pattern for RaT = -1000. For both cases (aiding and opposing) the flow destabilize on increasing N by inviting point of inflection or flow separation on the velocity profile. Overall, the buoyancy force have significant impact on the non-Darcy mixed convection under LTNE conditions. Keywords—buoyancy ratio, mixed convection, non-Darcy model, thermal non-equilibrium
منابع مشابه
Non-Darcian Mixed Convection Flow in Vertical Composite Channels with Hybrid Boundary Conditions
In this article, the effects of viscous dissipation and inertial force on the velocity and temperature distributions of the mixed convection laminar flow in a vertical channel partly filled with a saturated porous medium have been studied. In this regard, the Brinkman–Forchheimer extended Darcy model was adopted for the fluid flow in the porous region. In addition, three different viscous dissi...
متن کاملConjugate Heat Transfer of MHD non-Darcy Mixed Convection Flow of a Nanofluid over a Vertical Slender Hollow Cylinder Embedded in Porous Media
In this paper, conjugate heat transfer of magneto hydrodynamic mixed convection of nanofluid about a vertical slender hollow cylinder embedded in a porous medium with high porosity have been numerically studied. The Forchheimer’s modification of Darcy’s law was used in representing the nanofluid motion inside the porous media. The governing boundary layer equations were transformed to non-dimen...
متن کاملThermo-Diffusion Effect on Free Convection Heat and Mass Transfer in a Thermally Linearly Stratified Non-Darcy Porous Media
Thermo-diffusion effect on free convection heat and mass transfer from a vertical surface embedded in a liquid saturated thermally stratified non Darcy porous medium has been analyzed using a local non-similar procedure. The wall temperature and concentration are constant and the medium is linearly stratified in the vertical direction with respect to the thermal conditions. The fluid flow, temp...
متن کاملEffect of slip and variable thermal boundary conditions on hydromagnetic mixed convection flow and heat transfer from a non-linearly stretching surface
The effect of partial slip and temperature dependent fluid properties on the MHD mixed convection flow from a heated, non-linearly stretching surface in the presence of radiation and non-uniform internal heat generation/absorption is investigated. The velocity of the stretching surface was assumed to vary according to power-law form. Thermal transport is analyzed for two types of non-isothermal...
متن کاملUnsteady Heat and Mass Transfer Near the Stagnation-point on a Vertical Permeable Surface: a Comprehensive Report of Dual Solutions
In this paper, the problem of unsteady mixed convection boundary layer flow of a viscous incompressible fluid near the stagnation-point on a vertical permeable plate with both cases of prescribed wall temperature and prescribed wall heat flux is investigated numerically. Here, both assisting and opposing buoyancy forces are considered and studied. The non-linear coupled partial differential equ...
متن کامل